Prototyping a large field size IORT applicator for a mobile linear accelerator.
نویسندگان
چکیده
The treatment of large tumors such as sarcomas with intra-operative radiotherapy using a Mobetron is often complicated because of the limited field size of the primary collimator and the available applicators (max Ø100 mm). To circumvent this limitation a prototype rectangular applicator of 80 x 150 mm(2) was designed and built featuring an additional scattering foil located at the top of the applicator. Because of its proven accuracy in modeling linear accelerator components the design was based on the EGSnrc Monte Carlo simulation code BEAMnrc. First, the Mobetron treatment head was simulated both without an applicator and with a standard 100 mm applicator. Next, this model was used to design an applicator foil consisting of a rectangular Al base plate covering the whole beam and a pyramid of four stacked cylindrical slabs of different diameters centered on top of it. This foil was mounted on top of a plain rectangular Al tube. A prototype was built and tested with diode dosimetry in a water tank. Here, the prototype showed clinically acceptable 80 x 150 mm(2) dose distributions for 4 MeV, 6 MeV and 9 MeV, obviating the use of complicated multiple irradiations with abutting field techniques. In addition, the measurements agreed well with the MC simulations, typically within 2%/1 mm.
منابع مشابه
Commissioning the First Mobile Dedicated Accelerator for Intraoperative Electron Radiotherapy in Iran
Introduction: Intraoperative radiotherapy is a radiotherapy technique in which a high single fraction of radiation dose is delivered to the patient after surgery and Concurrent with anesthesia time. The most frequent method for IORT implementation is Intraoperative electron radiotherapy (IOERT), in which, some dedicated and high dose per pulse electron accelerators are employe...
متن کاملMonte Carlo Simulation of Electron Beams produced by LIAC Intraoperative Radiation Therapy Accelerator
Background: One of the main problems of dedicated IORT accelerators is to determine dosimetric characteristics of the electron beams. Monte Carlo simulation of IORT accelerator head and produced beam will be useful to improve the accuracy of beam dosimetry.Materials and Methods: Liac accelerator head was modeled using the BEAMnrcMonte Carlo simulation system. Phase-space files were generated at...
متن کاملPhysical characteristics of electron beam from conventional and beam shaper IOERT applicator: A comparison study
Introduction: Intraoperative electron radiation therapy (IOERT) is one of the cancer treatment techniques that delivers high doses to tumor bed during surgery. IOERT can be performed by either conventional LINACs or dedicated IORT accelerators such as LIAC (Light Intraoperative Accelerator). Two types of applicators can be used with LIAC dedicated accelerator including conventi...
متن کاملDesign and dosimetry characteristics of a commercial applicator system for intra‐operative electron beam therapy utilizing ELEKTA Precise accelerator
The design concept and dosimetric characteristics of a new applicator system for intraoperative radiation therapy (IORT) are presented in this work. A new hard-docking commercial system includes polymethylmethacrylate (PMMA) applicators with different diameters and applicator end angles and a set of secondary lead collimators. A telescopic device allows changing of source-to-surface distance (S...
متن کاملNuclear Physics Comparison of Measured and Monte Carlo Calculated Dose Distributions for the Novac7® Linear Accelerator
Percentage depth doses (PDDs) and transverse dose profiles (TDPs) were calculated by a Monte Carlo simulation of electron beams of different energies (3, 5, 7 and 9 MeV) produced by a NOVAC7® accelerator. The NOVAC7® is a linear accelerator designed for Intraoperative Radiation Therapy (IORT). The PDDs and TDPs were also experimentally determined. Both calculations and measurements were done on...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physics in medicine and biology
دوره 53 8 شماره
صفحات -
تاریخ انتشار 2008